반응형

오늘 소개할 보고서의 주제는 바로 '코로나 바이러스'는 공기전염인가 침방울을 통한 비밀전염인가에 대한 내용과도 맞닿아있습니다. 그 동안 우리는 침방울이나 비말 등 감염자의 체액과의 접촉을 통해서  감염되는 것으로 알고있습니다. 그렇기 때문에 미국 질병통제예방센터인 CDC에서도 마스크 착용보다는 손씻기를 더욱 권고한다고 하죠? 

 

오늘 보고서의 내용을 보시면 아마 마스크를 좀 더 잘 착용하는 것에 대해서 자료를 찾아보실지 모르겠습니다.

 

Size distribution of exhaled aerosol particles containing SARS-CoV-2 RNA(코로나바이러스 RNA를 함유한 호기성 에어로졸 입자의 크기 분포)

 

 

Introduction(소개)

 

The aerodynamic size of the aerosol particles containing SARS-CoV-2 is key to understanding their transport behavior in air, their deposition mechanisms in the respiratory tract upon inhalation and type of personal protective equipment and mitigation strategies that would be efficient to minimize exposure. The importance of different particle sizes’ contribution to the spread of COVID-19 has been widely debated during the pandemic; however, the existing data are still scarce. A handful of studies have presented size-resolved information on SARS-CoV-2 RNA in exhaled aerosols; however, most of them with only two or three size fractions [1–3]. Others have collected size-segregated aerosol samples from hospital air and detected SARS-CoV-2 RNA; however, the sources of aerosolization, such as coughing or medical procedures, were not well defined [4–7]. Taken together, these findings have identified SARS-CoV-2 RNA in aerosol particles ranging from <0.25 µm to >10 µm, but the size resolution and information on relative concentrations are limited. Furthermore, there is no data on changes in the size of exhaled virus-containing aerosol particles during the course of the COVID-19 infection.

 

SARS-CoV-2를 포함하는 에어로졸 입자의 공기역학적 크기는 공기 중 운반 행동, 흡입 시 호흡기에 축적되는 메커니즘, 개인 보호 장비의 유형 및 노출을 최소화하는 데 효율적인 완화 전략을 이해하는 데 중요합니다. COVID-19 확산에 대한 다양한 입자 크기의 기여의 중요성은 팬데믹 기간 동안 널리 논의되었지만, 기존 데이터는 여전히 부족합니다. 일부 연구는 호기성 에어로졸의 SARS-CoV-2 RNA에 대한 크기 분해 정보를 제시했지만, 대부분은 크기 분율이 두 개 또는 세 개에 불과합니다 [1-3]. 다른 사람들은 병원 공기에서 크기 분리 에어로졸 샘플을 수집하고 SARS-CoV-2 RNA를 검출했지만, 기침이나 의료 절차와 같은 에어로졸화의 원천은 잘 정의되지 않았습니다 [4–7]. 종합하면, 이러한 연구 결과는 <0.25 µm에서 >10 µm 범위의 에어로졸 입자에서 SARS-CoV-2 RNA를 확인했지만, 크기 분해능과 상대적 농도에 대한 정보는 제한적입니다. 또한 코로나19 감염 과정에서 배출된 바이러스가 포함된 에어로졸 입자의 크기 변화에 대한 데이터는 없습니다.

 

 

 

In this case study, we found a person with confirmed COVID-19 already on the day of symptom onset, who was able to participate in extensive measurements. Thus, we performed detailed characterization of the exhaled SARS-CoV-2-containing aerosol particle size distribution during breathing, talking and singing, from the day of symptom onset and then daily for a total of four days.

 

이번 사례연구에서는 코로나19 확진자가 증상 발생 당일 이미 발견돼 광범위한 측정에 참여할 수 있었습니다. 따라서 증상이 발생한 날부터 호흡, 대화 및 노래 중에, 그리고 총 4일 동안 매일 내뿜는 SARS-CoV-2 함유 에어로졸 입자 크기 분포에 대한 자세한 특성화를 수행했습니다.

 

 

Materials and methods(실험대상과 방법)

 

Measurements were performed in February 2022 on the exhaled air from a COVID-19 subject on the first four days of symptoms. The subject had been exposed to SARS-CoV-2 two days prior to symptom onset and was screened positive by PCR test for SARS-CoV-2. The subject, a healthy 33 year old man, was fully vaccinated (three doses, last dose six weeks earlier) and without previously known COVID-19.

 

2022년 2월 코로나19 환자에서 배출된 공기를 증상 첫 4일 동안 측정했습니다. 환자는 증상 시작 이틀 전에 SARS-CoV-2에 노출되었으며 SARS-CoV-2에 대한 PCR 테스트에서 양성 판정을 받았습니다. 피험자인 33세의 건강한 남성은 이전에 알려진 COVID-19 없이 완전한 백신(3회 접종, 6주 전 마지막 접종)을 받았습니다.

 

 

Aerosol and patient sample collection(에어로졸과 환자로부터의 검체채취)

 

On each day, the subject was breathing, talking and singing for 30 min each into the opening of a funnel from which exhaled aerosol was sampled (Figure 1). A silica dryer removed moisture from the exhaled air to guarantee that the particles were measured at their dry size as is standard for comparison of aerosol size distributions. Thereafter, the exhaled air was directed to a next generation impactor (NGI, Copley Scientific) used for virus analysis and an aerodynamic particle sizer (APS, model 3321, TSI Inc.) for overall aerosol size distribution in the range 0.5–20 µm. The NGI was operated during 30 min for each sample at an airflow rate of 60 L min−1, separating particles in the following eight size fractions: >8.1 µm, 8.1–4.5 µm, 4.5–2.8 µm, 2.8–1.7 µm, 1.7–0.94 µm, 0.94–0.55 µm, 0.34–0.55 µm and 0.14–0.34 µm [8]. A new NGI collection plate was used for each of the breathing, talking and singing exercises.

Figure 1. Schematic picture of the exhaled aerosol collection setup. The subject was standing with the face in the opening of a funnel for sampling of the exhaled aerosol. The aerosol was first dehumidified by the dryer and then sampled by the next generation impactor (NGI) and the aerodynamical particle sizer (APS).

 

피험자는 매일 30분 동안 숨을 쉬고, 말하고, 노래를 불렀고, 배출된 에어로졸을 샘플링했습니다(그림 1). 실리카 드라이어는 에어로졸 크기 분포의 비교를 위해 표준처럼 입자가 건조한 크기로 측정되도록 하기 위해 내뿜는 공기에서 수분을 제거했습니다. 그 후, 배출된 공기는 바이러스 분석에 사용되는 차세대 임팩터(NGI, Copley Scientific)와 0.5~20µm 범위의 전체 에어로졸 크기 분포를 위한 공기역학적 입자 크기 조정기(APS, 모델 3321, TSI Inc.)로 향했습니다. NGI는 각 샘플에 대해 30분 동안 60 L min-1의 기류 속도로 작동되었으며, > 8.1 µm, 8.1–4.5 µm, 4.5–2의 8가지 크기 분율로 입자를 분리했습니다.8µm, 2.8–1.7µm, 1.7–0.94µm, 0.94–0.55µm, 0.34–0.55µm 및 0.14–0.34µm [8]입니다. 호흡, 말하기, 노래 연습 각각에 새로운 NGI 수집판이 사용되었습니다.

그림 1입니다. 배출된 에어로졸 수집 설정의 개략적인 그림입니다. 피실험자는 숨을 내쉬는 에어로졸의 샘플을 채취하기 위해 깔때기 구멍에 얼굴을 대고 서 있었습니다. 에어로졸은 먼저 건조기에 의해 제습된 후 차세대 임팩터(NGI)와 공기역학적 입자 크기(APS)에 의해 샘플링되었습니다.

 

코로나바이러스 입자를 포함한 에어로졸 수집을 위해 사용된 검체수집기

 

 

Measurements took place in the subject’s home and therefore, measurements of existing SARS-CoV-2 in the room air was performed every day starting simultaneously with the exhaled aerosol measurements using a liquid cyclone, the Coriolis µ (Bertin Technologies) as described in [9].

 

On each sampling day, the subject answered a questionnaire about perceived symptoms, and in addition, a nasopharyngeal swab sample and a saliva spit sample, intended to represent the hypopharyngeal region closer to the vocal cords (hereafter referred to as saliva), were collected.

 

 

측정은 피실험자의 집에서 이루어졌고, 따라서 실내 공기에서 기존의 SARS-CoV-2의 측정은 액체 사이클론인 코리올리 ( (Bertin Technologies)를 사용한 호기 에어로졸 측정과 동시에 [9]에 설명된 대로 매일 수행되었습니다.

피험자는 각 표본 추출일에 인식된 증상에 대한 설문지에 답했으며, 또한 성대에 더 가까운 인두하부위(이하 타액)를 나타내기 위한 비인두 면봉 샘플과 침 뱉기 샘플을 수집했습니다.

 

 

Sample preparation and analysis(검체 준비와 분석)

 

The NGI collection plates were sealed and stored at room temperature (<48 h) until transported to the laboratory where each impactor stage was swabbed with a wetted flocked nylon swab (UTM swabs, Copan Diagnostics). The swab was then placed in 1 mL universal transport media (UTM), vortexed and stored at −80 °C. RNA was extracted using the MagNA Pure 96 DNA and Viral NA Small Volume Kit (Roche Molecular Systems Inc.).

 

NGI 채집판은 실온(<48시간)에서 밀봉하여 보관한 후 각 임팩터 스테이지가 습식 몰드 나일론 면봉(UTM 면봉, Copan Diagnostics)으로 면봉 처리될 때까지 실험실로 운반되었습니다. 그런 다음 면봉을 1mL UTM(범용 이송 매체)에 넣고 -80°C에서 소용돌이 모양으로 감아 보관했습니다. RNA는 MagNA Pure 96 DNA와 Viral NA Small Volume Kit (Roche Molecular Systems Inc.)를 사용하여 추출되었습니다.

 

 

The Coriolis room air samples were stored at 4 °C (<48 h) until transported to the laboratory and then stored at −80 °C. The sample was concentrated to 140 µL using Amicon Ultra-15 centrifugal filter units (50 kDa cutoff, Merck Millipore). RNA from room air, nasopharyngeal and saliva samples were extracted using the QIAamp Viral RNA Mini kit (Qiagen). The nasopharyngeal sample from the day of symptom onset was analyzed by PCR for variant-specific mutations in the spike region.

 

 

코리올리 실내 공기 샘플은 실험실로 운반된 다음 -80°C에 저장될 때까지 4°C(<48시간)에서 보관되었습니다. 샘플은 Amicon Ultra-15 원심 필터 유닛(50 kDa 컷오프, Merck Milipore)을 사용하여 140 µL로 농축되었습니다. QIAamp 바이러스 RNA 미니 키트(Qiagen)를 사용하여 실내 공기, 비인두 및 타액 샘플에서 RNA를 추출했습니다. 증상이 시작된 날의 비인두 샘플은 스파이크 영역의 변이 특이적 돌연변이에 대해 PCR에 의해 분석되었습니다.

 

 

 

All samples were analyzed by reverse transcription quantitative polymerase chain reaction (RT-qPCR) using the qPCRBIO Probe 1-step virus detect kit (PCR Biosystems) with the CDC N1 and N2 primers and probes (impactor samples) [10] or with the WHO E-gene primers and probes (nasopharyngeal, saliva and room air samples). All samples were run in duplicates and samples with at least one Ct-value ≤40 were considered positive.

 

모든 샘플은 qPCRB를 사용하여 역전사 정량적 중합효소 연쇄반응(RT-qPCR)에 의해 분석되었습니다.IO Probe 1단계 바이러스 탐지 키트(PCR Biosystems)는 CDC N1 및 N2 프라이머와 프로브(임팩트 또는 샘플)[10] 또는 WHO 유전자 프라이머와 프로브(비인두, 침 및 실내 공기 샘플)를 사용합니다. 모든 검체는 중복으로 실행되었으며 적어도 하나의 Ct-값 ≤ 40인 검체는 양성으로 간주되었습니다.

 

Results(결과)

 

SARS-CoV-2 RNA was detected in seven particle size fractions from 0.34 to >8.1 µm, but not in the eighth and smallest size fraction, 0.14–0.34 µm (Figure 2(a)). The highest RNA concentrations were found in particles sized 0.94–2.8 µm during singing and talking. For all days and exercises, 90% of the SARS-CoV-2 RNA was detected in aerosol particles <4.5 µm. The concentration of SARS-CoV-2 RNA was highest at the day of symptom onset and declined for each day thereafter (Figure 2(b)). There were similar numbers of SARS-CoV-2 positive size fractions during singing (n = 12) and talking (n = 10), but only one size fraction was positive for breathing throughout the four days of measurements (collected on the day of symptom onset).

 

SARS-CoV-2 RNA는 0.34 ~ > 8.1 µm의 7개 입자 크기 분율에서 검출되었지만, 8번째 및 가장 작은 크기 분율인 0.14–0.34 µm에서는 검출되지 않았습니다(그림 2(a)) 노래하고 말하는 동안 0.94–2.8 µm 크기의 입자에서 가장 높은 RNA 농도가 발견되었습니다. 매일 그리고 모든 실험에서 SARS-CoV-2 RNA의 90%가 에어로졸 입자 < 4.5μm에서 검출되었습니다. SARS-CoV-2 RNA의 농도는 증상 발생 당일에 가장 높았고 이후 매일 감소했습니다(그림 2(b)). 노래(n = 12)와 대화(n = 10) 중 SARS-CoV-2 양의 크기 분율은 유사한 수가 있었지만, 4일 동안 측정(증상 시작일에 측정) 동안 호흡에 대해 단 하나의 크기 분율만이 양성이었습니다.

Figure 2. (a) SARS-CoV-2 RNA concentrations from each exercise on all four days (added together) in the eight impactor stages. The dashed line indicates the limit of detection (LOD) concentration for one sample. (b) The concentrations of SARS-CoV-2 RNA on the day of symptom onset (day 0) and the following three days (all particle size fractions added together). An exponential trend line was fitted to the ‘All exercises’ data series.

 

그림 2. (a) 8개의 임팩터 단계에서 4일 동안 (함께 추가) 각 연습에서 얻은 SARS-CoV-2 RNA 농도입니다. 점선은 하나의 샘플에 대한 검출 한계(LOD) 농도를 나타냅니다. (b) 증상 발생일(0일)과 다음 3일(모든 입자 크기 분율을 합산)의 SARS-CoV-2 RNA 농도입니다. 지수 추세선이 '모든 실험' 데이터 시리즈에 일관적이었습니다.

 

그림 2. (a) 8개의 각 입자크기에 따른 4일 동안 (함께 추가) 각 연습에서 얻은 SARS-CoV-2 RNA 농도입니다. 점선은 하나의 샘플에 대한 검출 한계(LOD) 농도를 나타냅니다. (b) 증상 발생일(0일)과 다음 3일(모든 입자 크기 분율을 합산)의 SARS-CoV-2 RNA 농도입니다. 지수 추세선이 '모든 실험' 데이터 시리즈에 일관적입니다.

 

 

The same data as in Figure 2(a) are presented in Figure 3(a), separated for each day from symptom onset (breathing, talking and singing added together). The majority of SARS-CoV-2 RNA was found in particles <4.5 µm on all days (day 0: 90%, day 1: 93%, day 2: 68% and day 3: 100%).

 

그림 2(a)와 동일한 데이터가 그림 3(a)에 제시되어 있으며, 증상 발생과 매일 구분되어 있습니다(호흡, 말하기, 노래 추가). SARS-CoV-2 RNA의 대다수는 모든 날 <4.5 µm(일 0:90%, 1일:93%, 2일:68%, 3일:100%)의 입자에서 발견되었습니다.


Figure 3. (a) SARS-CoV-2 RNA concentrations from all exercises (added together) on each day in the eight impactor stages. The dashed line indicate the limit of detection (LOD) for one sample. (b) RNA concentration in nasopharyngeal and saliva samples on the day of symptom onset (day 0) and the following three days (note the logarithmic scale).

 

그림 3. (a) 8개의 임팩터 단계에서 매일 모든 연습(함께 추가)에서 얻은 SARS-CoV-2 RNA 농도입니다. 점선은 하나의 검체에 대한 검출 한계(LOD)를 나타냅니다. (b) 증상이 발생한 날(0일)과 그 다음 3일(로그 스케일에 주목)에 비인두 및 타액 검체의 RNA 농도를 나타냅니다.

 

 

그림 3/3입니다. 그림 3. (a) 8개 모식도에서 매일 모든 연습(함께 추가)에서 얻은 SARS-CoV-2 RNA 농도입니다. 점선은 하나의 검체에 대한 검출 한계(LOD)를 나타냅니다. (b) 증상이 발생한 날(0일)과 그 다음 3일(로그 스케일에 주목)에 비인두 및 타액 검체의 RNA 농도를 나타냅니다.

 

 

The subject was infected with SARS-CoV-2 omicron BA.2. Both the nasopharyngeal and saliva samples had lower RNA concentrations on the day of symptom onset compared to on day 1 and thereafter RNA levels decreased again (Figure 3(b)). Thus, the highest concentrations in exhaled aerosols preceded the peak concentrations in nasopharynx and saliva with one day.

 

환자는 SARS-CoV-2 오마이크론 BA.2에 감염되었습니다. 비인두와 타액 샘플 모두 증상이 시작된 날 RNA 농도가 1일째에 비해 낮았고 그 후 RNA 수치가 다시 감소했습니다(그림 3(b)). 따라서, 내뿜는 에어로졸의 최고 농도는 하루 만에 비인두와 침의 최고 농도보다 앞섰습니다.

 

The subject had cough and congested nose from the day of symptom onset and the three following days. Other symptoms were runny nose (day 0), sore throat (day 0), myalgia (day 1–2) and fatigue (day 2). The case fully recovered from the infection within one week.

 

환자는 증상이 시작된 날과 다음 3일 동안 기침과 코막힘이 있었습니다. 다른 증상으로는 콧물(0일째), 인후통(0일째), 근육통(1-2일째), 피로(2일째)가 있었습니다. 그 환자는 일주일 만에 감염에서 완전히 회복되었습니다.

 

 

 

Three of four room air samples were negative as well as the negative control collected in outdoor air. The room air sample collected on day 0 was positive, close to the detection limit, corresponding to 200 RNA copies m−3 air.

 

실내 공기 샘플 4개 중 3개는 음성이었고 실외 공기에서 수집된 음성 대조군도 음성이었습니다. 0일째에 수집된 실내 공기 샘플은 검출 한계치에 가까운 양성으로, 200개의 RNA 복사 m-3 공기량에 해당합니다.

 

 

 

Particle size and concentration data obtained from the APS were analyzed; however, the high sampling airflow rate through the funnel, 61 L min−1 compared to the lower normal exhalation airflow rate, ∼10 L min−1, made the exhaled particle concentrations indistinguishable from the background concentration. Thus, the APS data were not considered further.

 

APS에서 얻은 입자 크기와 농도 데이터를 분석했지만, 낮은 정상 호기 유량인 ~10 L min-1에 비해 깔때기를 통한 높은 샘플링 기류 속도인 61 L min-1이 방출된 입자 농도를 배경 농도와 구별할 수 없게 만들었습니다. 따라서 APS 데이터는 더 이상 고려되지 않았습니다.

 

 

Discussion(토론사항)

 

We present the to date most detailed size distribution of SARS-CoV-2 RNA containing aerosol particles from the exhaled air that we collected from one person with COVID-19 on the day of symptom onset and the three following days. SARS-CoV-2 RNA was found in seven of the eight aerosol particle size fractions, from 0.34 to >8.1 µm (Figure 2(a)). The size of an aerosol particle is important as it determines its aerodynamic behavior, meaning how long it can remain airborne and how and where it deposits on surfaces or in our respiratory tract. Thus, it is crucial to understand in what particle sizes SARS-CoV-2 exist, in order to design appropriate protection equipment and mitigation strategies such as ventilation and respiratory masks.

 

우리는 증상 발생 당일과 다음 3일 동안 코로나19에 걸린 한 사람으로부터 수집한 호기 중 에어로졸 입자가 포함된 SARS-CoV-2 RNA의 가장 상세한 크기 분포를 제시합니다. SARS-CoV-2 RNA는 0.34에서 8.1μm 사이의 8개의 에어로졸 입자 크기 분율 중 7개에서 발견되었습니다(그림 2(a)). 에어로졸 입자의 크기는 공기역학적 행동을 결정하기 때문에 중요합니다. 즉, 공기역학적 행동을 얼마나 오래 유지할 수 있는지와 표면이나 호흡기에 어떻게 그리고 어디에 축적되는지 의미합니다. 따라서 적절한 보호 장비 및 환기 및 호흡 마스크와 같은 완화 전략을 설계하기 위해 SARS-CoV-2의 입자 크기가 어느 정도인지 이해하는 것이 중요합니다.

 

 

Previous studies have detected exhaled SARS-CoV-2 RNA in two [1,2], three [3] or five size fractions [11]. Adenaiye et al. found 50% more positive samples <5 µm than >5 µm during breathing, talking and singing combined [1]. Coleman et al. found 85% of all RNA gene copies <5 µm (15% in >5µm), mainly during talking and singing [2]. In a previous study, we detected SARS-CoV-2 RNA in seven samples <4 µm (three samples <1 µm and four samples 1–4 µm) and two samples >4 µm during breathing, talking and singing combined [3]. These findings agree with the results in the present study, showing that 90% of the airborne SARS-CoV-2 RNA exhaled during vocalization is present in aerosol particles <4.5 µm. As is standard, the aerosol particles were measured at their dry size. The original droplet size can be assumed to be up to 5 times larger in diameter considering that, for instance, saliva contains around 99% water. This water will, however, evaporate within a few seconds and almost always before the particles deposit on the ground.

 

이전 연구에서는 두 개의 [1,2], 세 개의 [3] 또는 다섯 개의 크기 분율[11]에서 방출된 SARS-CoV-2 RNA를 발견했습니다. Adenaiye 등은 호흡, 대화 및 노래를 결합하는 동안 양성 샘플 <5 µm>을 50% 더 발견했습니다 [1]. Coleman 등은 주로 말하고 노래하는 동안 모든 RNA 유전자 복사본 <5μm (>5μm의 15%)의 85%를 발견했습니다 [2]. 이전 연구에서, 우리는 7개의 샘플 <4 µm (3개의 샘플 <1 µm과 4개의 샘플 1~4 µm)과 2개의 샘플 >4 µm에서 SARS-CoV-2 RNA를 검출했습니다 [3]. 이러한 발견은 발성 중에 방출되는 공기 중 SARS-CoV-2 RNA의 90%가 에어로졸 입자 < 4.5μm에 존재한다는 것을 보여주는 본 연구의 결과와 일치합니다. 일반적으로 에어로졸 입자는 건조한 크기로 측정되었습니다. 예를 들어, 침이 약 99%의 물을 함유하고 있다는 점을 고려하면, 원래의 방울 크기는 최대 5배 더 큰 지름으로 가정할 수 있습니다. 하지만 이 물은 몇 초 안에 증발할 것이고 거의 항상 입자가 땅에 침전되기 전에 증발할 것입니다.

 

 

Lednicky et al. detected more SARS-CoV-2 RNA in the size fraction 0.25–0.5 µm than in the other four size fractions together (<0.25, 0.5–1.0, 1.0–2.5 and 2.5–10 µm) [11]. However, the patient was not talking or singing, which could be the reason for finding less SARS-CoV-2 RNA in the 1–3 µm where this study detected the highest RNA levels. Studies on non-infectious exhaled aerosol particles have shown increased concentrations of aerosol particles in the size range 1–3 µm during talking and singing compared to breathing [12,13]. The sampling procedure in a car cabin, by Lednicky et al. may also be favorable to smaller accumulation mode particles that deposit less efficiently.

 

Lednicky 등은 다른 4개의 크기 분율 (<0.25, 0.5–1.0, 1.0–2.5 및 2.5–10 µm)보다 크기 분율 0.25–0.5 µm에서 더 많은 SARS-CoV-2 RNA를 검출했습니다 [11]. 그러나 환자는 말을 하거나 노래를 부르지 않았으며, 이는 이 연구에서 가장 높은 RNA 수치가 검출된 1~3μm에서 SARS-CoV-2 RNA가 적게 검출된 이유일 수 있습니다. 비감염성 호기성 에어로졸 입자에 대한 연구 결과, 호흡[12,13]에 비해 말하고 노래하는 동안 1-3µm 크기의 에어로졸 입자의 농도가 증가했습니다. Lednicky 등에 의한 차량 실내에서의 샘플링 절차는 또한 덜 효율적으로 침전되는 더 작은 축적 모드 입자에 유리할 수 있습니다.

 

 

 

The concentration of SARS-CoV-2 RNA declined by 50% from the day of symptom onset to the day after and continued to decline rapidly the following two days (Figure 2(b)). Previous studies have also seen an association between short time from symptom onset and SARS-CoV-2 detection in exhaled aerosols [2,3,14]. Thus, available data indicate that aerosol transmission is more prone to happen close to symptom onset than later during the course of the infection.

 

SARS-CoV-2 RNA의 농도는 증상이 발생한 날부터 다음날까지 50% 감소했으며, 이틀 후에도 급격한 감소를 지속했습니다(그림 2(b)). 이전 연구에서도 증상 발생 후 짧은 시간과 호기성 에어로졸에서 SARS-CoV-2 검출 사이의 연관성이 발견되었습니다 [2,3,14]. 따라서, 사용 가능한 데이터는 에어로졸 전염이 감염 과정 중에 발생하는 것보다 증상 시작에 가까운 경우에 더 쉽게 발생한다는 것을 나타냅니다.

 

 

 

Any influence on the impactor measurements from existing SARS-CoV-2 in the room air was minor on day 0 and undetectable on days 1–3. The SARS-CoV-2 RNA collected in the room air sample corresponded to 2% of the RNA collected by the impactor on day 0; hence, we consider the background negligible.

 

실내 공기에서 존재하는 SARS-CoV-2의 충격기 측정에 미치는 영향은 0일째에는 미미했으며 1~3일째에는 감지할 수 없었습니다. 실내 공기 샘플에서 수집된 SARS-CoV-2 RNA는 0일째에 임팩터에 의해 수집된 RNA의 2%에 해당하므로 배경을 무시할 수 있다고 생각합니다.

 

 

 

Nasopharyngeal and saliva samples followed the same pattern with the highest concentrations on the day after symptom onset, however, in discordance with the pattern of exhaled aerosol samples where the highest levels were found on day 0. This is interesting, as COVID-19 has been dominated by presymptomatic transmission [15]. Since this is a one-subject observation, more data are needed to verify the results with statistical significance.

 

비인두와 타액 샘플은 증상이 발생한 다음날 가장 높은 농도로 동일한 패턴을 따랐지만, 0일째에 가장 높은 수치가 발견된 호기성 에어로졸 샘플의 패턴과 일치하지 않았습니다. COVID-19가 증상 전 전염에 의해 지배되었기 때문에 이것은 흥미롭습니다 [15]. 이것은 단일 대상 관측치이므로 통계적 유의성을 가진 결과를 검증하기 위해 더 많은 데이터가 필요합니다.

 

 

Three studies have cultivated SARS-CoV-2 from size-segregated aerosol samples, both being successful only with samples containing sub-micrometer particles [1,5,11]. In this study, we did not cultivate the samples due to suboptimal sample handling for that purpose; however, we saw a rapid decline in the sub-micrometer particles’ RNA concentrations after symptom onset (Figure 3(a)). Combined with epidemiological studies showing that most COVID-19 transmission occurs close to symptom onset [16], it is likely that sub-micrometer particles are important for the spread of COVID-19.

SARS-CoV-2 in aerosol particles smaller than 1 µm could explain why facemask protection only partly reduces COVID-19 spread [17]. A study testing particle trapping efficiencies of surgical facemasks showed a 2.8 fold reduction of viral copy numbers in fine particles exhaled from patients and a 25 fold reduction of coarse particles [18]. Nonetheless, wearing a facemask reduces both emissions and the inhaled dose in case of presence of infectious aerosols and is, thus, a useful tool for minimizing spread of COVID-19.

 

세 가지 연구에서 크기 분리 에어로졸 샘플로부터 SARS-CoV-2를 배양했으며, 둘 다 서브마이크로미터 입자가 포함된 샘플에서만 성공했습니다 [1,5,11]. 본 연구에서는 그러한 목적을 위해 차선의 샘플 취급으로 인해 샘플을 배양하지 않았지만 증상 발생 후 서브마이크로미터 입자의 RNA 농도가 급격히 감소하는 것을 확인하였습니다(그림 3(a)). 대부분의 COVID-19 전염이 증상 시작[16]에 가깝게 발생한다는 역학 연구와 결합하면, 서브마이크로미터 입자가 COVID-19의 확산에 중요할 가능성이 높습니다.

 

 

This case study only investigate a single subject. There are known interindividual variations in viral load [19], aerosol emissions [2,12,13,18], infectiousness [20] and symptom manifestations in between cases of COVID-19. Though considering that our findings are in line with both SARS-CoV-2 RNA emissions and non-infectious respiratory aerosol emissions, and corresponds well to COVID-19 transmission primarily occurring close to symptom onset [16], the generalizability of our results is strong despite being a case study. Extensive SARS-CoV-2 aerosol emissions close to symptom onset caused by vocalization (talking and singing) can explain the significant contribution of COVID-19 spread originating from super-spreading events [21,22].

 

1µm 미만의 에어로졸 입자에서 SARS-CoV-2는 안면 마스크 보호가 COVID-19 확산을 부분적으로만 줄이는 이유를 설명할 수 있습니다 [17]. 수술용 안면 마스크의 입자 트래핑 효율성을 테스트한 연구는 환자로부터 배출되는 미세 입자에서 바이러스 복사 수가 2.8배 감소하고 거친 입자가 25배 감소하는 것을 보여주었습니다 [18]. 그럼에도 불구하고, 마스크 착용은 감염성 에어로졸이 있는 경우 배출량과 흡입량을 모두 감소시켜 COVID-19의 확산을 최소화하는 데 유용한 도구입니다.

 

이 사례 연구는 단 하나의 주제만 조사합니다. 코로나19의 경우 간 바이러스 부하 [19], 에어로졸 배출 [2,12,13,18], 감염성 [20] 및 증상 발현에 대해 알려진 개인 간 차이가 있습니다.

 

 

Conclusions(결론)

 

By intense sampling in a single patient, we provide detailed information on the distribution of SARS-CoV-2 RNA in different aerosol particle sizes on the day of symptom onset and the following three days. SARS-CoV-2 RNA was detected in seven size fractions from 0.34 to >8.1 µm with the highest concentrations found in particles sized 0.94–2.8 µm. We found 90% of the SARS-CoV-2 RNA in particles <4.5 µm, which can stay airborne for hours, deposit in all parts of the lung upon inhalation and they easily follow air movements. Our results indicate that these small particles are of high importance for the spread of COVID-19, especially close to symptom onset.

 

 

단일 환자에서 강도 높은 샘플링을 통해 증상 발생 당일과 다음 3일 동안 서로 다른 에어로졸 입자 크기로 SARS-CoV-2 RNA의 분포에 대한 자세한 정보를 제공합니다. SARS-CoV-2 RNA는 0.34 ~ 8.1 µm의 7가지 크기 분율에서 검출되었으며 0.94 ~ 2.8 µm 크기의 입자에서 가장 높은 농도가 발견되었습니다. 사스-CoV-2 RNA의 90%가 공기 중에 몇 시간 동안 머물 수 있고, 흡입 시 폐의 모든 부분에 축적되며, 공기 움직임을 쉽게 따라가는 것을 발견했습니다. 우리의 결과는 이러한 작은 입자가 특히 증상 시작에 가까운 COVID-19의 확산에 매우 중요하다는 것을 나타냅니다.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

반응형
  • 네이버 블러그 공유하기
  • 네이버 밴드에 공유하기
  • 페이스북 공유하기
  • 카카오스토리 공유하기